臓病学はおもしろい

松尾清一 Seiichi Matsuo

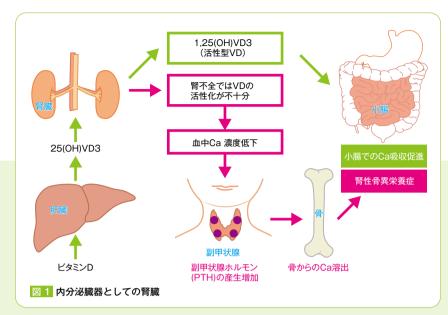
名古屋大学大学院医学系研究科腎臓内科学教授、名古屋大学附属病院長

1. Amazing Kidnev: 腎臓というすごい臓器

腎臓という臓器は、深く知れば知るほどおもしろい臓器 であるし、また、そのすごさに驚かされる。わずか握りこ ぶし大の臓器として左右両側に存在する目立たないもので あるが、私たちの身体の中では驚くほど多様で大切な働き をしている。それらを学ぶのが腎臓病学であり、臨床的に も研究的にも若い人たちが本気でチャレンジする価値のあ る臓器である。

まず、腎臓といえば、腸管、肺、肝臓と並んで排泄臓器 の主なものに数えられている。腸管は食物残渣を大便とい う形で体外へ排除するし、肺は炭酸ガスを体外へ排出する。 肝臓は主に酵素(化学)反応によりさまざまなものを解毒 している。同様に、腎臓はさまざまな老廃物を血液濾過に よってできる尿という形で体外に排泄する。しかし腎臓は 単なる排泄臓器ではなく、身体にとって大切で多様な働き をしている。

腎臓は偉大なるフィルターであり、偉大なる吸 収マシーンである


腎臓は、老廃物の排泄と水や電解質など体液の恒常性を 維持するために、2つの基本的な働きをしている。それは 血液の濾過と、それによってできた濾液の選択的な再吸収 (排泄) である。

腎臓には血液を濾過するの に特化した毛細血管の塊があ り、糸球体と呼ばれている。 糸球体はひとつの腎臓の皮質 に約100万個存在し、両方の 腎臓を合わせると 200 万個あ

る。直径約 0.2mm で、目では十分見えない大きさである。 糸球体には休むことなく血液が流入し、濾液が作られてい る。200万個の糸球体の濾液をすべて集めると、その人の 身体の大きさにもよるが 1 分間に約 100ml. 24 時間では 約 140 ~ 1501 になる。これを糸球体濾過値(Glomerular Filtration Rate; GFR)と呼んでいる。糸球体における血 液濾過は主に分子の大きさや電荷に基づいて機械的に行わ れるので、この濾液の中には、私たちの身体にとって必要 なものと不必要なものが混在していることになる。たとえ ば、濾液がそのまま尿になって体外に出てしまえば、私た ちは水だけでも毎日1401以上飲まなければならない。ま た食塩は約1.2kg 摂取しないといけない。しかし実際には、 糸球体でできた濾液が腎臓の出口である腎盂に運ばれるま でに、尿細管という細い管を通る。尿細管では必要なもの は再吸収により身体に戻す。不必要なものは再吸収しない (あるいはさらに濾液の中に分泌する) という形で選択を 行っている。かくして、濾液の中の水分や塩分の99%は 再び体内に戻ってくる。一方でクレアチニンという筋肉の 老廃物は100%排泄され再吸収されることはない(表1)。

糸球体での濾過や尿細管での再吸収・分泌などの正常な 働きがさまざまな原因で阻害されると、蛋白尿や電解質異常

	血液中の総量	1日に濾過される量	再吸収される割合(%)	尿中に排泄される 1 日量
水	3L	150L	99	1 ~ 2L
蛋白	200g	2g	95	0.1g
ナトリウム	10g	580g	99	5g
クロール	11g	640g	99	6g
ブドウ糖	3g	180g	100	0
尿素	5g	27g	53	13g
クレアチニン	0.03g	1.6g	0	1.6g

などのさまざまな症状や検査異常が現れ る。一方で、腎臓の働きや病気が発症す るメカニズムは現在分子レベルで明らか になってきており、このような研究の進 展が臨床の場に新しい診断や治療法とい う形でフィードバックされている。

腎臓は血液酸性度(pH)を中性 に保つための中心臓器である

腎臓は血液を濾過し、濾液を尿細管で再吸収するという 基本的な働きのほかに多様な機能も併せ持っている。血液 の pH の維持 (=酸塩基平衡) もそのひとつである。肺と 連携プレーをしながら、常に血液の pH を 7.4 ± 0.05 の狭 い範囲にぴったりと調節している能力はすごい。基本的に は腎臓からの酸の排泄と肺からの炭酸ガス排出により調節 している。

腎臓は造血を遠隔コントロールする中枢である

腎臓の機能が悪くなると例外なく貧血を合併する。腎臓 には酸素量を感知するセンサーがあり、酸素量が低いと腎 臓はセンサーを介してエリスロポエチン(EPO)というホ ルモンを産生する。EPO は骨髄に作用して後期赤芽球前駆 細胞に働き、分化・増殖を促し、特異的な赤血球造血作用 を刺激する。この場合、血液を作る工場は骨髄であるが、 腎臓は酸素量センサーと EPO を介して赤血球産生を遠隔コ ントロールしているといえる。腎機能が低下すると腎臓に おける EPO 産生能も低下するために最終的に赤血球の産生 が低下する。このようにして起こる貧血を腎性貧血という。

現在では遺伝子工学を駆使して工場で生産された EPO が薬として使用され、腎不全の最大の合併症のひとつで、 多くの患者の QOL を低下させてきた腎性貧血が克服され つつある。病気のメカニズム解明のための研究が治療戦略 を明確にし、遺伝子工学を駆使した治療薬の開発に結びつ き、実際の治療に応用された好例であり、計り知れない恩 恵を患者にもたらした。

腎臓は骨・Ca 代謝の中心的な臓器である

腎臓はまた、Ca代謝ネットワークの中心的な臓器のひ とつでもある。かなり以前から腎不全患者では病的骨折 が多いことが知られていた。これは骨密度が低下し、強度 が低下するために起こる骨折である。腎臓は肝臓と共同し て. 経口摂取されたビタミン D (D3) を水酸化により活 性化させる。活性型ビタミン D3 は腸管からの Ca 吸収を 刺激する。腎機能が低下すると腎臓でのビタミンDの活 性化が十分行われず、腸管からの Ca 吸収が低下する。こ れを副甲状腺が感知して副甲状腺ホルモン(parathyroid hormone; PTH)を分泌する。この PTH は骨吸収作用を 持ち、主に骨から血中に Ca を動員する。その結果、骨が 弱くかつ脆くなる(図1)。このような状態を腎性骨異栄